Abstract: Environmental change has a human dimension, and has had so for at least the last 10,000 years. The prehistoric impact of people on the Arctic landscape has occasionally left visible traces, such as house and field structures. More often than not, however, the only evidence available is at the microscopic or geochemical level, such as fossil insect and seed assemblages or changes in the physical and chemical properties of soils and sediments. These records are the subject of SEAD, a multidisciplinary database and software project currently underway at Umeå University, Sweden, which aims to create an online database and set of tools for investigating these traces, as part of an international research infrastructure for palaeoecology and environmental archaeology.
Cover letter for Buckland at al. “Integrating Human Dimensions of Arctic Palaeoenvironmental Science: SEAD - The Strategic Environmental Archaeology Database”

Corresponding author: Philip Buckland (contact details in letter header)

Dear Editor,

The submitted article outlines a new multiproxy relational database system for environmental archaeology and palaeoecology currently under construction in Umeå, Sweden (http://www.sead.se). The system is due for public release during 2010, and is funded by the Swedish Research Council, forming part of the country’s Scientific Research Infrastructure and Large Database initiatives (http://www.disc.vr.se). The aim is to make a large amount of scientifically published and grey literature in environmental archaeology available online to both general and specialist audiences. Access will be facilitated through a series of user friendly online interfaces which will allow simple yet powerful GIS, data selection, comparison and analysis activities to be undertaken. By integrating modern reference data with the fossil record for a multiproxy scope, SEAD is currently unique in its ability to provide in-house environmental reconstructions and cross comparisons between fossil and modern fauna or flora. It is also highly topical in its orientation towards the human impact/interactions (i.e. archaeological) angle of past climate and environmental change issues. The authors intend to create a system which will help provide more robust, data rich reconstructions and understandings of the long term history of human-nature interactions, in particular those that occurred at the highly sensitive Arctic fringes.

The development of this system is a cumulative result of over 25 years of environmental archaeology, experimental archaeology and method development undertaken in Umeå, Sweden, and the community need for new systems to store and make accessible enormous amounts of data. A key feature of the project is its emphasis on software tools, and in collaboration with the Humanities computing lab, also in Umeå, a number of online analysis systems are being developed. One particular interface, for which the prototype is online at http://qvizz1.humlab.umu.se/frepalm/sead_bugs, utilises a facetted browser system to allow dynamic querying and mapping of disparate aspects of insect ecology and palaeoecology. Other interfaces are under development for advanced querying, data entry and clearing house submission, and climate and environmental change reconstruction, and these will be available for testing in late spring.

This is, of course, a collaborative effort and is being coordinated with the developers and users of The European Pollen Database, Neotoma, WODAN, ABCD and other existing or emerging systems with similar aims, but slightly different approaches, target audiences or data. The aim is to complement, rather than duplicate, although the international Neotoma system will mirror selected fossil data. SEAD is currently unique in its storage of modern ecology and fossil data for insects and the implementation of the Mutual Climatic Range (MCR) method, derived from the author’s previous Bugs database projects (http://www.bugscep.com).

It is hoped that the release of SEAD and related projects, and the attraction of users and collaboration through articles such as this, will inspire a new level of multiproxy, GIS empowered analyses which would previously only have been possible through months of laborious data collation, manipulation and analysis in numerous statistical packages. There are also near future plans to develop an online teaching system which utilises the database and others like it.

Yours sincerely,

Philip Buckland
Reviewer suggestions:

Ingelise Stuijts
The Discovery Programme
63 Merrion Square
Dublin
D2
Ireland
ingelise@discoveryprogramme.ie
+353 1 639 3718

Stuart Dunn
Centre for e-Research
King's College London
Strand
London
WC2R 2LS
UK
stuart.dunn@kcl.ac.uk
+44 (0)20 7848 2709

Eric Grimm
ISM Research & Collections Center
1011 East Ash Street
Springfield, IL 62703
USA
grimm@museum.state.il.us
+1 217 785 4846

Allan Hall
Archaeology
The King's Manor
University of York
York
YO1 7EP
UK
arh1@york.ac.uk
+44 1904 434950

Jon Sadler
Geography, Earth and Environmental Sciences
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK
j.p.sadler@bham.ac.uk
+44 (0)121 41 45776
Integrating Human Dimensions of Arctic Palaeoenvironmental Science: SEAD - The Strategic Environmental Archaeology Database

Philip I. Buckland¹, Erik Eriksson¹, Johan Linderholm¹, Karin Viklund¹, Roger Engelmark¹, Fredrik Palm², Patrik Svensson², Paul Buckland³, Eva Panagiotakopulu⁴, & Johan Olofsson⁵

¹ Environmental Archaeology Lab, Dept. Historical, Philosophical & Religious Studies, Umeå University
² HUMlab, Umeå University, Sweden
³ 20 Denbank Close, Crosspool, Sheffield, UK
⁴ Institute of Geography, School of GeoSciences. University of Edinburgh, UK
⁵ Uppsala Municipal Council, Uppsala, Sweden

Keywords:
Environmental change, climate change, environmental archaeology, multi-proxy database, research infrastructure, palaeoecology, multidisciplinary, e-science, Arctic.

1. Abstract

Environmental change has a human dimension, and has had so for at least the last 10 000 years. The prehistoric impact of people on the Arctic landscape has occasionally left visible traces, such as house and field structures. More often than not, however, the only evidence available is at the microscopic or geochemical level, such as fossil insect and seed assemblages or changes in the physical and chemical properties of soils and sediments. These records are the subject of SEAD, a multi-disciplinary database and software project currently underway at Umeå University, Sweden, which aims to create an online database and set of tools for investigating these traces, as part of an international research infrastructure for palaeoecology and environmental archaeology.
2. Introduction

Environmental archaeology and palaeoecology collectively encompass a number of sciences looking at the evidence for past environmental change, be it ‘natural’ or human induced. The subject matter comprises a massive range of temporal and spatial scales, from the impact of sunspot activity on vegetation (e.g. Blaauw et al. 2004), to the evidence for individual activities such as the cleaning of fleeces (Buckland & Perry 1989). The evidence for these events, patterns and activities may be found by investigating past changes in proxy indicators. These are the preserved remains of biological organisms or chemical and physical traces left behind after the changes have occurred. In the absence of humans, these relationships may have been direct, such as the range of temperatures in which a species can survive, or indirect, such as the arrival of insect species which feed upon a particular plant which is favoured by forest fires. Similarly, more anthropogenic relationships may also have been direct, such as the presence of grain pest insect species in relationship to the spatial distribution of grain cultivation and particularly storage (Buckland 1991), or indirect, such as changes in plant species composition due to changes in hydrology caused by human activities in wetlands (e.g. Vasari & Väänänen 1986). By examining archaeological samples, peat and lake sediments, or spatial and stratigraphic variation in the chemical and physical properties of soils and sediments, we can read these environmental archives and interpret the complex signals in terms of human activities, environmental change and climate change over time. To some extent, we can also gain valuable insights into high resolution weather aspects such as seasonality and hydrology, factors which are often more fundamental to human survival than long term fluctuations in climate (cf. Gräslund 2007; Ojala & Alenius 2005).

Whilst it is often useful to think in separate terms of natural processes and human impact (customarily background and anomalous signals), the two are intimately linked. Despite political and commercial claims to the contrary, humans cannot exist without cognizance of changes in environment and climate, and have often been forced to adapt to these through technological innovation or relocation (in the northern Scandinavian context, see most recently Gräslund 2007).
Likewise, wherever humans are, they interact with their local environment at varying scales, and these interactions may in turn have regional or even global impacts, such as the current global warming, which is perhaps the culmination of a process which began with initial forest clearance in the mid-Holocene (Ruddiman 2003, 2005; Vavrus et al. 2008).

The empirical evidence for these changes represents a massive amount of data, for which there is currently no consolidated, publicly accessible database. Whilst there are several databases covering individual aspects of this (e.g. BugsCEP: Buckland & Buckland 2006; EPD 2009), the Strategic Environmental Archaeology Database Project (SEAD), currently underway at the Environmental Archaeology Lab, in collaboration with HUMlab, at Umeå University, will provide a centralised, publicly accessible resource for the storage, extraction, analysis and visualisation of data on past climate and environmental change, including both the human dimension and natural events. SEAD will form part of an international research infrastructure network for environmental archaeology and Quaternary palaeoecology and collaborate closely with the US led NEOTOMA multi-proxy database project (Neotoma 2009). This will help us to understand better past natural and human induced changes in the environment and climate, and human responses to these, and thus, (whilst appreciating Hegel’s aphorism that what we learn from history is that we never learn from history), to predict, and perhaps cope with future change scenarios. The project is initially concentrating on the available, often unpublished environmental archaeology data from Sweden, later extending to other countries around the Arctic fringe and beyond.

3. Why begin with the Arctic?

Arctic environments are particularly sensitive to both human impact and climate change (ACIA 2004). These ecosystems generally have low biodiversity, with many species lying at the limits of their tolerance or unique to high arctic habitats (cf. Makarova et al. 2008), having relatively slow development and recovery rates (Woodin & Marquiss 1997). The effects of past landscape management activities often persist for hundreds or even thousands of years (Buckland & Edwards 1984). In the areas of Norse settlement in south-west Greenland, farms abandoned half a
century ago are still evident in the landscape, even where grazing of the infield is now restricted to a few reindeer (Fig. 1). The impact of manuring may be evident in the isotopic composition of the vegetation (Commissio & Nelson 2007), with field systems remaining visible in vegetation structures, and buried soil surfaces clearly visible in shallow core samples. Whilst such past impacts may be less evident in forested taiga, rather than tundra landscapes (e.g. Segerström 1990), it is an important attribute of any conservation strategy that each unique trajectory to the present vegetation is understood in as much detail as possible before management decisions are made. The unfortunate history of natural fire suppression provides a particularly salutary example (Morrison 1993).

The basic Lyellian principle that the present is the key to the past underlies all attempts to reconstruct Quaternary environments, although it has to be recognised that periods of rapid climate transition and occasional historical accident may produce assemblages which lack any direct modern analogue. The southward movement of the Arctic fringe during periods of intense cold may also allow mixing of arctic and alpine elements, as for example in the late glacial insect assemblages from Church Stretton (Osborne 1972) and Messingham (Buckland 1982) in England. With knowledge of present distributions and ecology, it has been possible to reconstruct glacial and periglacial conditions from sediments deposited when the ice margins extended southwards into northern central Europe and the United Kingdom, some 15–70 000 years ago, as well as the intervening warmer periods (e.g. Coope 1995a & b, 2002). Insect species have been found in these deposits which have present day distributions in Siberia (e.g. Angus 1973), Tibet (e.g. Coope 1973), and northern Scandinavia (e.g. Coope 2002; Coope et al. 1980), as well as other indications of arctic desert (Briant et al. 2004). Beetles (Coleoptera) were the first proxy data source which indicated the rapidity of changes at the end of the last Ice Age (Ashworth 1973; Coope & Brophy 1972; Osborne 1972), long before similar evidence emerged from the Greenland ice cores (Alley 2000), and they have subsequently been widely used to undertake large scale geographical temperature reconstructions (e.g. Coope & Lemdahl 1995; Coope et al. 1998). Similar studies have also been undertaken using chironomids (Brooks & Birks 2000), and pollen records provide
reconstructions of past vegetational changes in the Arctic (e.g. Bigelow et al. 2003). In terms of the application of database sources, Davis et al. (2003) used data from the European Pollen Database (EPD 2009) to reconstruct Holocene temperature changes. Buckland (2007) used the BugsCEP database to experiment with general north-western European environmental and climate change reconstructions for the last 20 000 years.

Occasionally the several lines of evidence have been integrated into a more holoptic picture, for example at Kråkanes in Norway (Birks et al. 2000), but there are far more cases where the lines of evidence remain discrete, or sites where only one element of the biota or other evidence has been examined. A further problem concerns the longer timescale. There are few continuous palaeoenvironmental records which extend the Holocene and Lateglacial record back through the last glacial period into the previous interglacial. In terms of its use of both pollen and coleopteran evidence, La Grande Pile a peat bog in the French Vosges, remains a unique record in northern Europe of some 140 000 years of climate and environmental change (de Beaulieu & Reille 1992; Ponel 1995; Ponel et al. 2003), although there are much longer pollen sequences further south (cf. Tzedakis et al. 2006). This means that any reconstruction, which seeks to address the more extended timescale, especially over large geographical areas, must rely upon aggregating data from a number of sites. This task is also essential if spatial and temporal variation at the species, habitat and human activity levels is to be considered. The only effective and reproducible manner of undertaking these tasks is through the use of large scale multiproxy databases, where archaeological and environmental data are integrated.

Hominin ability to cope with extreme environments is critical in understanding evolutionary and cultural change and has been much discussed in the context of the interplay between Homo sapiens and H. neanderthalensis (cf. Mellars 2004; Tzedakis et al. 2007). Human adaptations to the Arctic involved major biological and cultural adaptation, seen perhaps at its most extreme in the Independence I (= Sarqaq partim) and II (= Dorset I) hunters of the far north of Greenland (Grunnøw & Jensen 2003; Jensen 2006). Although there are dates from the Russian Arctic (Pavlov
et al. 2001) and the Finnish cave site of Susiluola (Schutz 2002), which suggest that hominins had reached the edge of the Arctic before the last glaciation (for Swedish evidence, see also Heimdahl 2006), detail of changing environment and rapid climate change during the postglacial colonisation of northern Scandinavia requires further elaboration (Engelmark & Buckland 2005). In evolutionary terms, these events were extremely rapid, and the Arctic provides the opportunity to trace the speed of environmental and cultural response to past climate change over the last 13,000 years. These events in human biogeography are impossible to understand fully without detailed knowledge of the contemporary environments, and thus factors influencing the availability of resources and other conditions for survival. A large quantity of these data are contained in unpublished Swedish grey literature, and it is the aim of the SEAD project to make them publicly available.

4. **Palaeoenvironmental Database Systems**

While there are a number of existing database systems for the storage, retrieval, and in some cases mapping, of multiple archaeological site and find data (e.g. FMIS 2009; ADS 2009), there are no existing systems which provide researchers with online access to raw multiproxy environmental archaeology or palaeoecology data in connection with these. Furthermore, there are few database supported systems which offer built in tools for the analysis and visualisation of multiple multiproxy datasets, forcing the user to rely on exporting datasets to external software tools for these tasks. With respect to single proxy, that is to say individual biological proxy groups, there are a number of systems currently available, including the European and other regional pollen databases (EPD 2009), FAUNMAP (FAUNMAP 1994), the North American Plant Macrofossil Database (Jackson et al. 1997), the North American Packrat Midden Database (Strickland et al. 2001; USGS/NOAA 2006), as well as a large number of other datasets available through individual project websites or portals such as the World Data Centre for Palaeoclimatology (NOAA 2009) and the PAGES paleo data resources website (PAGES 2008). The Bugs Coleopteran Ecology Package (BugsCEP: http://www.bugscep.com; Buckland & Buckland 2006; Buckland 2007) is one such system, covering both fossil insect data and modern ecological and climate reference data.
BugsCEP is one of the few systems that integrates tools for the interrogation and visualisation of its data into the software/database package, thus providing users with immediate access to both the data of interest and the apparatus for performing a number of invaluable analyses (Buckland 2007). By simple virtue of the members of the SEAD development team, BugsCEP is an immediate ancestor to SEAD. The Bugs database will be ingested into SEAD and form one of its two initial master datasets, the other being the Umeå Environmental Archaeology Laboratory’s collected analysis results and associated metadata from over 25 years of work as Sweden’s national resource for environmental archaeology (Fig. 2).

5. **The SEAD Project**

In 2007, the Swedish Research Council identified a significant need for improving the availability of publicly accessible databases for archaeological data, as part of a national appraisal of data resources and needs in the humanities (Strangert 2007). The SEAD project attempts not only to fill part of this demand, but also to bridge a number of gaps between the humanities and natural sciences in terms of access to, and tools for the analysis of, data concerning past changes in climate and environment, and especially human components in these. By the latter we mean the evidence for impacts that past societies may have had on their local and regional environments, as well as the potential influence climate and environmental change may have had on various aspects of subsistence, daily life and interaction between groups. The ongoing discussion of relationships between Viking and Saami (most recently, see Zachrisson 2006) provides one example wherein the database will collate the necessary environmental background.

Creating a database and associated set of software tools on this scale is no simple process, and the project was fortunate enough to receive a Swedish Research Council planning grant prior to the construction grant. This enabled a comprehensive survey of the Laboratory’s data, both analogue and digital, analysis and interpretation pathways, and the visualisation and interfacing needs of potential users from internal and external research groups (Buckland *et al.* 2006). The project also draws from the collective experience of over 20 years of developmental history from the Bugs
database project (Buckland 2000, 2007; Buckland & Buckland 2002, 2006; Buckland et al. 2004; Sadler et al. 1992), which provided numerous lessons on what to do, and not to do, in terms of relevant database structure and interface design. It also provides a very large initial test dataset with which to kick start the development of SEAD (see http://www.bugscep.com/help/help_databaseoverview.html for a summary of the scope of BugsCEP). In terms of its database structure, SEAD borrows certain aspects from the Neotoma database (Neotoma 2009). In particular, the handling of chronologies and datasets (Fig. 3), which will help ensure the integration of SEAD into an international framework.

The SEAD project comes at a time when a number of national and international funding bodies are investing in international research infrastructures (Borgman 2008), and large databases form an important part of this. The majority of projects funded by the Swedish Research Council’s DISC (Database Infrastructure Research Committee: http://www.disc.vr.se/) funding stream are of medical or demographic substance (approx. 35 of 49 projects funded in 2007-08), and only five concern environmental or climate data (Source: Swedish Research Council online project database, VR 2009). There are, however, a number of multidisciplinary, palaeoenvironmental database projects currently underway internationally, including the European Pollen Database (EPD 2009) and Neotoma (Neotoma 2009), with which the SEAD project is collaborating, in addition to numerous national and regional environmental archaeology databases. The latter include: The Archaeobotanical Computer Database - ABCD (ABCD 2009), The Dutch Relational Archaeobotanical Database – RADAR (Haaster & Brinkkemper 1995), The Irish Archaeological wood and charcoal database - WODAN (2009), to mention but a few.

It is intended that inter-project cooperation will lead to a greater collective utilisation of database storage and application, and that community based, cross-platform tools will be developed to enhance the potential investigative power of the palaeoenvironmental sciences. The development of new tools for database linking, custom application programmer interfaces (API’s) for developing
new tools, and the establishment of international networks for research led development and data stewardship will help achieve these objectives.

6. **Integrating Human Dimensions of Palaeoecology and Environmental Archaeology**

The SEAD project integrates human dimensions at two levels. Firstly, the core design and development stages of the project are being undertaken as a collaborative venture between the Environmental Archaeology Lab (MAL) and the Humanities Computing Lab (HUMlab) at Umeå University. In working with HUMlab, SEAD has access to a full-scale digital humanities infrastructure, associated research groups and competence in innovative digital tool making and interaction design (Svensson *in press*). This collaboration is working in particular towards the efficient use of multi-purpose, online data exploration tools through their application in multiple projects, such as the Facetted Browser system developed within the QVIZ project (http://www.qviz.eu/; Palm 2008). This system, which was initially developed for exploring historical archive metadata, has now been adapted to work with the Bugs insect dataset (Fig. 4) and will be further adapted to work with the significantly more complex SEAD database structure. This work also ties in with several ongoing European collaborative efforts and initiatives and shows how research infrastructure can be both a common, expanding platform and cater for project specific adaptations. The focus on creating interpretative tools in SEAD is well in line with current developments in the field of digital humanities (cf. Drucker & Nowovskie 2005). The Environmental Archaeology Lab is itself also a multidisciplinary organization, applying methods from the natural sciences to questions of archaeology and palaeoecology. The resultant combined force, in addition to a variety of external advisors, is a project group with an unusually broad spectrum of skills which can benefit different aspects of the development cycle.

The second human dimension, so to speak, is that encompassing human activities, past societies and human interaction with the environment. Whilst natural processes are undoubtedly the
most powerful elements in environmental and climate change, it is no longer valid to dismiss the importance of human impact on both the Holocene and contemporary scales (IPCC 2007a; Ruddiman 2003, 2005). Simultaneously, we are becoming more aware of our vulnerability to natural forces, in that climatic and environmental change is now not only affecting the sustainability of our current lifestyles, but even influencing global politics at heretofore unrivalled levels (IPCC 2007b). It would be perhaps foolish to think that past societies were any less open to the impact of these forces, although it must be remembered that influencing factors should never be considered in isolation. The potential impacts of past, present or future climate change and greenhouse warming, for example, must be considered in the context of demographics, human activity, habitat availability and inter-species associations. For many species of plant and animal climatic amelioration alone is not enough to lead to an expansion of their geographical distribution: suitable habitats or host environments must also be available (Lomolino et al. 2006). Humans are not only responsible for massive habitat destruction, but also excellent creators of artificial habitat, as the history of mosquito-borne diseases testifies (Spielman & d'Antonio 2002; Reiter 2001). These actions can have profound effects on local biodiversity, especially where they constitute habitat modification in the quest for resources and food (cf. Ruddiman 2005). Consequently, archaeological and palaeoecological data should be vital components in any model of climate and environmental change if we are to use them to predict future conditions, including possible factors which could influence health, quality of life and the sustainability of resources.

In common with a number of similar palaeoecology databases, SEAD aims to bridge the human-nature divide and provide a transparent interface to data on both natural and human influenced environmental change, and a number of the tools necessary to evaluate these with respect to their components and inter-relationships. From this base, we can then move forwards to more detailed and accurate large scale studies of how past cultures have interacted with, manipulated and been influenced by their environments, and thus gain a better understanding of the long term consequences of land management practices and demographic changes.
7. **Conclusions**

There is a clear and important need for improving access to high quality palaeoecological data, particularly in connection with archaeological investigations, in order to improve our collective abilities to understand past changes in human activities, environments and climates. Projects such as SEAD, EPD, NEOTOMA and BugsCEP are critical elements in establishing freely accessible international research infrastructures for multidisciplinary environmental science. The collaborative engagement of multiple trans-disciplinary research groups in the design stage of such projects is a clear advantage in terms of inspiring what would be considered outside the box” solutions to problems from within traditional disciplinary boundaries. It is also essential that the different groups creating either similar, or complementary, systems interact with each other and work together towards efficient solutions for problems outside of the scope of any single research group.

8. **References**

ABCD, 2009. The Archaeobotanical Computer Database. Initiated by Philippa Tomlinson and managed by Allan Hall. University of York, UK. Information at URL:
http://www.york.ac.uk/inst/chumpal/ARH/ABCD-webpage.doc

Angus, R.B., 1973. Pleistocene Helophorus (Coleoptera, Hydrophilidae) from Borislav and Starunia in the Western Ukraine, with a reinterpretation of M. Lomnicki's species, description of a new

Coope, G.R., Brophy, J.A., 1972. Late Glacial environmental changes indicated by a coleopteran succession from North Wales. Boreas. 1, 97-142.

Reiter, P., 2001. Climate Change and Mosquito-Borne Disease. Environ Health Perspect, 109 (suppl 1), 141–161

Schultz, H.-P., 2002. The lithic industry from layers IV–V, Susiluola Cave, Western Finland, dated to the Eemian interglacial. Préhistoire Européenne, 16-17, 43-56

Fig. 1. Site V53c in Austmannadal, SW Greenland, a Norse farm abandoned 650 years ago and yet its hayfield is still evident in the landscape. Photo: Paul Buckland, 1982.

Fig. 2. The geographical distribution of sites from which data is currently included in the SEAD database, including the contents of the Bugs Coleopteran Ecology Package (BugsCEP) database.

Fig. 3. Research orientated representation of the SEAD database structure. Datasets represent a single proxy type from a single group of samples, essentially equivalent to the traditional spreadsheet of species/variables vs samples. Geographical positioning of sites, samples and sample groups in combination with externally constructed chronologies allow the cross-correlation of SEAD data with external datasets.

Fig. 4. Screenshot of a prototype of the online SEAD mapping interface adapted from the QVIS archive integration project. Filter boxes (facets) are brought forth or removed by clicking on their titles at the top of the screen. The facets allow a logical data mining progression from left to right, the results of which are shown by points on the map and a list of sites and samples on the right. The time bar in the centre of the screen displays the extent of the dating evidence for the sites. This particular screen shows the location of fossil sites for beetle species specific to standing water environments, but which are now considered to be extinct in the UK.
Figure 2

- Environmental Archaeology Lab. sites
- BugsCEP stratigraphic sequences
- BugsCEP archaeological sites
Figure 3